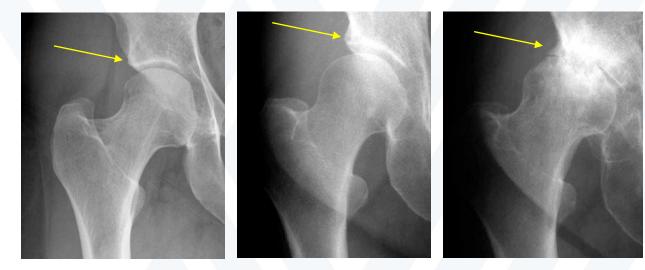
What's Hip with Hip Dysplasia? Mid-term Outcomes of Peri-acetabular Osteotomy vs. Hip Arthroscopy

mme HOPEDIC SPECIF

Edwin Chaharbakhshi M.D.

Octavian Andronic M.D. Patrick Zingg M.D. Paulo Padilla M.D. Ajay Lall M.D. Benjamin Domb M.D.

West Virginia University - Department of Orthopaedics (Morgantown, WV) Balgrist University Hospital – Department of Orthopaedics (Zurich, Switzerland) Balgrist University Hospital – Department of Orthopaedics (Zurich, Switzerland) American Hip Institute (Chicago, IL) American Hip Institute (Chicago, IL) American Hip Institute (Chicago, IL)



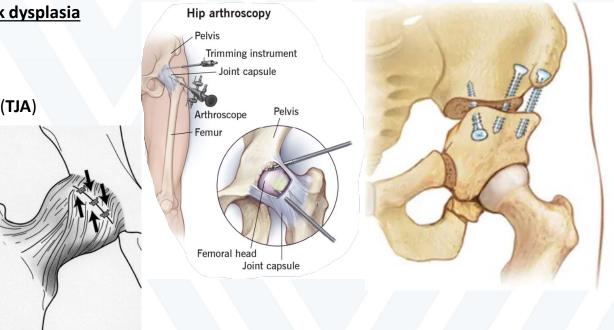
Disclosures

I have nothing to disclose.

Hip Dysplasia

- Instability → osteoarthritis (OA)
- 20-40% of patients with OA¹
- Younger → joint preservation?

1. Gala et al. J Bone Joint Surg Am. 2016



"Borderline" Dysplasia: Treatment Controversy

Hip Arthroscopy (HA)²⁻⁴ \rightarrow <u>avoid in frank dysplasia</u>

Peri-acetabular osteotomy (PAO)^{5,6}

End stage OA \rightarrow Total joint arthroplasty (TJA)

2. Haynes et al. J Hip Preservation Surg. 2018

3. Domb *et al*. Arthroscopy. 2015

4. Beals et al. Am J Sports Med. 2022

5. Sierra *et al.* Journal of Hip Surgery. 2017
6. Shon *et al.* Arch Orthop Trauma Surg. 2021

Purpose and Hypothesis

Purpose:

To compare the multi-center minimum five-year outcomes of **HA vs. PAO** for patients with radiographically defined **borderline hip dysplasia (BHD)**

Hypothesis:

Patients undergoing HA <u>or</u> PAO would demonstrate **similar** and **significant improvements** in **patient-reported outcomes** (PROs) from pre-operatively to minimum five-year follow up.

Methods

Inclusion criteria

15-40 years old

Borderline dysplasia (lateral center-edge angle 18°-25°)

PAO or HA for femoroacetabular impingement (FAI)

Tönnis osteoarthritis grade < 2

Documented PROs (pre-op and 5+ years post-op)

Exclusion Criteria

Moderate/severe dysplasia (LCEA < 18°)

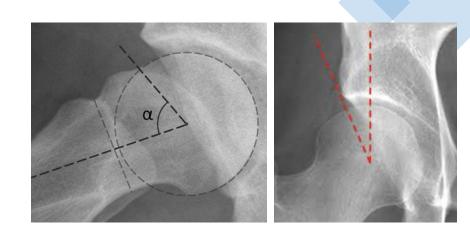
Prior hip surgery

Avascular necrosis

Slipped capital femoral epiphysis

Inflammatory arthritides

Worker's Compensation


Microfracture

Data Collection

Retrospective review of prospectively collected data

- Demographics: age, sex, BMI
- Radiographs: alpha angle, LCEA, OA grade

- PROs: Modified Harris Hip Score (mHHS, 0-100), minimal clinically important difference (MCID)
- Future surgeries (hardware removal, revision, TJA)

Statistical Analysis

25 patier	A pr power a hts in each g	nalysis:	% power	
	R Software: propensity matching (age, sex, BMI)			
	Norm a Shapiro-V	-		
Parametric, continuous: Two-tailed unpaired t-test		Mann-Wl	metric, contin nitney U-test, ^v nodification	
	Catego Chi-Squa Fisher's Ex	are and		

Results: Demographics

Table 1	PAO (n = 28)	HA (n = 49)	p-value
Hip laterality (n, %)			0.49
Left	12 (42.9)	25 (51.0)	
Right	16 (57.1)	24 (49.0)	
Sex (n, %)			0.275
Female	25 (89.3)	39 (79.6)	
Male	3 (10.7)	10 (20.4)	
Age at surgery, years (mean, SD)	25.6 ± 6.8	25.6 ± 6.8	1
BMI, kg/m² (mean, SD)	22.4 ± 2.1	22.9 ± 2.8	0.562
Follow-up time, months (mean, SD)	95.8 ± 19.7	81.3 ± 25.8	0.001

Results: Radiographs

ΡΑΟ	НА	p-value
21.1 ± 1.9 (18.0-24.0)	22.6 ± 1.9 (18.0-24.0)	0.002
36.4 ± 4.8 (29.2-46.9)	23.0 ± 3.7 (14.0-32.0)	< 0.001
< 0.001	0.347	
47.1 ± 7.4 (35.9-65.9)	58.0 ± 11.7 (37.0-90.0)	<0.001
37.4 ± 4.6 (30.7-44.3)	42.6 ± 5.1 (34.0-58.0)	<0.001
< 0.001	< 0.001	
		0.241
21 (75.0)	42 (85.7)	
7 (25.0)	7 (14.3)	
	21.1 ± 1.9 (18.0-24.0) 36.4 ± 4.8 (29.2-46.9) (0.001) 47.1 ± 7.4 (35.9-65.9) 37.4 ± 4.6 (30.7-44.3) < 0.001	$\begin{array}{c} 21.1 \pm 1.9 (18.0 - 24.0) \\ 36.4 \pm 4.8 (29.2 - 46.9) \\ \hline & 23.0 \pm 3.7 (14.0 - 32.0) \\ \hline & 0.347 \\ \hline & 0.001 \\ \hline & 0.347 $

Results: PROs

Table 3	ΡΑΟ	НА	p-value
mHHS (mean ± SD)			
Preoperative	72.6 ± 10.4	69.7 ± 12.7	0.26
Latest	89.4 ± 16.1	93.4 ± 10.2	0.32
p-value	< 0.001	< 0.001	
Delta mHHS (mean ± SD, range)	14.9 ± 15.4	22.5 ± 16.6	0.06
MCID (n, %)	26 (78.8%)	40 (83.3%)	0.605

Results: Future Surgeries

Table 4	PAO	НА	p-value
Future surgeries (n, %)	8 (28.6)	4 (8.2)	0.024
Hardware removal	8 (28.6)	0	
Revision (PAO + Scope)	0	3 (6.1)	0.297
ТНА	0	1 (2.1)	1
Time to future surgery, months	16.5 ± 2.9 (12.2-20.9)	33.4 ± 16.6 (11.2-50.7)	0.134
Time to THA conversion, months	N/A	98.8	-

PAO vs. HA for BHD: Summary

PAO and HA \rightarrow similar improvements for **BHD** at mean of **7.5 years** post-operatively

PAO → Higher **re-operation** rate (hardware removal)

 $HA \rightarrow$ Higher **revision** rate (recurrent instability)

References

- 1. Gala L, Clohisy JC, Beaulé PE. Hip dysplasia in the young adult. J Bone Joint Surg Am. 2016;98(1):63-73.
- 2. Haynes JA, Pascual-Garrido C, An TW, Nepple JJ, ANCHOR Group, Clohisy JC. Trends of hip arthroscopy in the setting of acetabular dysplasia. J Hip Preserv Surg. 2018;5(3):267-273.
- 3. Domb BG, LaReau JM, Hammarstedt JE, Gupta A, Stake CE, Redmond JM. Concomitant hip arthroscopy and periacetabular osteotomy. Arthroscopy. 2015;31(11):2199-2206.
- Beals TR, Soares RW, Briggs KK, Day HK, Philippon MJ. Ten-year outcomes after hip arthroscopy in patients with femoroacetabular impingement and borderline dysplasia. Am J Sports Med. 2022;50(3):739-745.
- 5. Sierra RJ, Potter GD, Novais EN, Trousdale RT. Successful outcomes at midterm follow-up of periacetabular osteotomy done for mild hip dysplasia. **The Journal of Hip Surgery.** 2017;01(4):167-172.
- 6. Shon HC, Park WS, Chang JS, et al. Long-term results of Bernese periacetabular osteotomy using a dual approach in hip dysplasia. Arch Orthop Trauma Surg. Published online August 3, 2021.

Questions?

•••••

Thank you for this opportunity!

